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Abstract 

Generative model learning is one of the key problems in machine learning and computer vision. Currently the use of generative 

models is limited due to the difficulty in effec- tively learning them. A new learning framework is proposed in this paper which 

progressively learns a target genera- tive distribution through discriminative approaches. This framework provides many 

interesting aspects to the liter- ature. From the generative model side: (1) A reference distribution is used to assist the learning 

process, which removes the need for a sampling processes in the early stages. (2) The classification power of discriminative ap- 

proaches, e.g. boosting, is directly utilized. (3) The abil- ity to select/explore features from a large candidate pool allows us to 

make nearly no assumptions about the train- ing data. From the discriminative model side: (1) This framework improves the 

modeling capability of discrimina- tive models. (2) It can start with source training data only and gradually “invent” negative 

samples. (3) We show how sampling schemes can be introduced to discriminative mod- els. (4) The learning procedure helps to tighten 

the decision boundaries for classification, and therefore, improves ro- bustness. In this paper, we show a variety of applications 

including texture modeling and classification, non-photo- realistic rendering, learning image statistics/denoising, and face modeling. 

The framework handles both homogeneous patterns, e.g. textures, and inhomogeneous patterns, e.g. faces, with nearly an identical 

parameter setting for all the tasks in the learning stage. 

 

1. Introduction 
 
Generative model learning is one of the key problems in 
machine learning and computer vision. Generative models 
are desirable as they capture the underlying generation pro- 
cess of a data population of interest. In the context of image 
analysis, such a data population might be a texture or an 
object category. However, it is usually very hard to learn a 
generative model for data of high dimension since the struc- 
ture of the data space is largely unknown. A collection of 
data samples (ensemble) may lie on a very complex mani- 

fold. Existing generative models include principle compo- 
nent analysis (PCA) [20], independent component analysis 
(ICA) [12], and mixture of Gaussians models [4]. These 
models assume simple formation of the data, and they have 
difficulty in modeling complex patterns of irregular distri- 
butions. General pattern theory [9], though nice in prin- 
ciple, requires defining complex operators and rules; how 
amenable it is to modeling a wide class of image patterns 
and shapes is still unclear. 
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Figure 1. Image patches sampled at different stages by our algorithm for learning natural image statistics. 

Discriminative models, often referred to as 

classification approaches, have been widely used in 

the literature. Many successful applications have 

been devised using methods like support vector 

machines (SVM) [24] or boosting [6]. Though these 

discriminative methods have strong discrim- 

ination/classification power, their modeling 

capability is limited since they are focusing on 

classification boundaries rather than the generation 

process of the data. Thus, they cannot be used to 

create (synthesize) samples of interest. Another 

disadvantage of the existing discriminative models is 

that they often need both positive and negative 

training samples, though a single-class classification 

was proposed in [16] using special kernels. 

Negative samples may not be obtained easily in 

some situations, e.g. it is very hard to obtain 

negative shapes. Nevertheless, situations occur 

where there is still room to improve the classification 

result but there are no negatives to use. Recent 

active learning strategies [1] help this problem 

slightly by including human subjects in a loop. 

The existing generative model learning 

frameworks [11, 3, 21, 23] have difficulty in 

capturing patterns of high com- plexity. In this paper, 

a new learning framework is proposed which 

progressively learns a target generative distribution 

via discriminative approaches. The basic idea is to 

use neg- 
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ative samples as ‘auxiliary’ variables (we call them pseudo- 

negatives), either bootstrapped or sampled from reference 

distributions, to facilitate the learning process in which dis- 

criminative models are used. Our method is different from 

the importance sampling strategy [17] in which a reference 

distribution is used for sampling. 

A given a set of image patches are treated as positives 

samples. We have an image database (5,000 natural im- 

ages) from which pseudo-negative samples are randomly 

selected. We then use the positives and pseudo-negatives to 

train a discriminative model, and recursively obtain pseudo- 

negative samples either by bootstrapping or by sampling. 

The algorithm converges when the training error is big- ger 

than a certain threshold, indicating that pseudo-negative 

samples drawn from the model are similar to the input pos- 

itive samples. This learning framework provides several in- 

teresting aspects to the existing generative and discrimina- 

tive learning literature. 
For the generative models: 

1. A reference distribution (image database) is used to assist the gen- 

erative model learning process. We make use of the image database 

for bootstrapping pseudo-negative samples which removes the need 

for sampling processes in the early stages (this was necessary 

in [11, 3, 21]). 

2. The discrimination/classification power of discriminative ap- 

proaches, e.g. boosting, is directly utilized. 

3. The ability of selecting/exploring features from a large candidate 

pool allows us to make nearly no assumptions about the training 

data. By using both position sensitive Haar features and position 

insensitive histogram features, the algorithm is able to handle both 

homogeneous and inhomogeneous patterns. 

For the discriminative models: 

1. This framework largely improves the modeling capability of exist- 

ing discriminative models. Despite some recent efforts in combining 

discriminative models in the random fields model [13], discrimina- 

tive models mostly have been popular for classification. 

2. Though starting from a reference distribution largely improves the 

efficiency of our algorithm, our learning framework also works with 

positive training data only, and gradually invent pseudo-negative 

samples. Traditional discriminative models always need both pos- 

itives and negatives. 

3. We discuss various sampling schemes based on the discriminative 

models. 

4. Our model can also be viewed as a classification approach. Differ- 

ent generative models learned are directly comparable if they use 

the same reference distribution. The progressive learning procedure 

helps to tighten the decision boundaries for the discriminative mod- 

els, and therefore, improves their robustness. (we show this in the im- 

age denoising case in the experiments, and more experiments in other domains 

will be carried to further illustrate this point.) 

Three other existing generative models are related to our 

framework, namely, the induction feature model [3], the 

MiniMax entropy model [21], and the products of experts 

model (POE) [11, 2, 25]. These algorithms are somewhat 

similar in that they are all learning a distribution from an 

exponential family. A feature selection stage appears in all 

these methods together with a sampling step to estimate the 

parameters for combining the features. Our model dif- fers 

from the existing generative models due to the explicit 

adoption of discriminative models. The feature selection 

and fusing strategy embedded in the boosting algorithm are 

more efficient than those in these generative model learning 

algorithms. This is due to two reasons:(1) The loss func- 

tion in boosting is based on classification error. (2) Positive 

and negative samples are given, and no sampling process is 

needed in the feature selection stage. Our model is not re- 

stricted on local cliques. By using both position sensitive 

Haar features and position insensitive histogram features, 

the algorithm is shown to be very flexible and general. The 

contrastive divergence learning algorithms [2, 11] empha- 

size on using less number of sampling steps to estimate the 

model parameters. A large body of energy-based classi- 

fication models [15] are mostly focused on discriminative 

models. The purpose of hybrid models in [14] is to study 

different priors over parameters. 

Our algorithm is also closely related to the self- 

supervised boosting algorithm by Welling et al. [26]. How- 

ever, our algorithm differs from [26] in several aspects: (1) 

We derive our generative models from the Bayesian theory 

and give convergence proof. In this paper, we use boost- 

ing as discriminative model. But any discriminative mod- 

els, e.g. SVM, can be applied in our model. [26] is re- 

stricted on Boltzmann distribution and boosting algorithm. 

(2)Our model combines a sequence of strong classifiers, 

whereas [26] focuses on the feature selection for weak clas- 

sifiers, which makes it more closely related to [3]. We di- 

rectly use boosting for feature selection and fusion. Our 

model is thus faster than [26] since sampling is not needed 

in training each weak classifier. (3)We provide many in- 

sights from both generative and discriminative models. (4) 

We use existing database and bootstrapping to improve the 

speed which is not in [26, 21, 19]. 

In this paper, we show a variety of applications including 

texture modeling and classification, non-photo-realistic ren- 

dering, learning image statistics/denoising, and face model- 

ing. The framework handles both homogeneous patterns, 

e.g. textures, and inhomogeneous patterns, e.g. faces, with 

nearly an identical parameter setting for all the tasks in the 

learning stage. 

2. Generative vs. discriminative models 
 

Figure 2. Illustration of generative v.s. discriminative models. Discriminative mod- 

els focus on classification boundaries between the positives and negatives, whereas 
generative models emphasize the data generation process in each individual class. 
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t=1 

p(y|x) =  t=1  , (2) Σ
y exp{

ΣT 

p(x|y = +1) =  t=1  t  t  , (3) (x|y = +1) and 
x 

Σ 

Let x be data vector and y ∈ {−1, +1} its label, indicat- 

ing either a negative or a positive sample. In a multi-class 

problem with n classes y is in {1, ..., n}; in this paper, we 

focus on two-class models. Given input data point x, a dis- 

criminative model computes p(y|x), the probability of x be- 

ing positive or negative. Of course we only need to compute 

p(y = +1|x) since p(y = −1|x) = 1 − p(y = +1|x). 

A generative model, on the other hand, often captures the 
generation process of x by modeling p(x|y = +1) and p(x|y 

= −1).1 Figure (2) gives an illustration of discrim- inative 

model p(y|x) and generative model p(x|y). As we can see, 

discriminative models are mostly focused on how 
well they can separate the positives from the negatives. A 

sample far from the decision boundary in the positive re- 

gion may not look like a positive sample at all. But a dis- 

criminative model will give a high probability to it being 

paper, the vector x represents an image patch. Our frame- 

work, however, is applicable to other problems such as 

shape, text, and medical data modeling. 

3.1. From discriminative to generative models 

Often, a positive class represents a pattern of interest and 
a negative class represents the background patterns. Thus, 

our goal is to learn a generative model p(x|y = +1). Rear- 

ranging Eqn. (1) gives 

p(y = +1|x)p(y = −1) 
 

p(x|y = +1) =  p(x|y = −1). 
p(y = −1|x)p(y = +1) 

(4) 

For notational simplicity, we assume equal priors (p(y = 

+1) = p(y = −1)). 
p(y = +1|x) 

positive. Generative models try to understand the basic for- 

mation of the individual classes, and thus, carry richer in- 

p(x|y = +1) = 
 

 

p(y = −1|x) 
p(x|y = −1). (5) 

formation than discriminative models. Given the prior p(y), 

one can always derive discriminative models p(y = +1|x) 
from generative models based on Bayes rule by 

p(x|y = +1)p(y = +1) 

The above equation says that a generative model for the 
positives p(x|y = +1) can be obtained from the discrim- 

inative model p(y|x) and a generative model p(x|y = −1) 
for the negatives. For clarity, we now refer to the distribu- 

p(y = +1|x) =  Σ
y∈{−1,+1} p(x|y)p(y) 

. (1) tion p(x|y = −1) = pr(x) as a reference distribution and 

call a set of samples drawn from pr(x) pseudo-negatives. 

However, generative models are much harder to learn than 

discriminative models, and often, one makes simplified as- 

sumptions about the data formation, e.g. orthogonal basis 

in PCA. 

We have  

 

p(x|y = +1) = 

 

p(y = +1|x) 
 

p(y = −1|x) 

 

 
pr(x). (6) 

It has been shown that AdaBoost algorithm and its varia- 

tions [6] are approaching logistical regression [7] according 

to 
exp{

ΣT αtyht(x)} 
 

 

A trivial observation is that p(x|y = +1) = pr(x) when 

p(y = +1|x) = p(y = −1|x). This is easy to under- 
stand. The positive and pseudo-negative samples are from 

 

 
 

where ht is a weak classifier. At each step, AdaBoost selects 

ht from a set of candidate classifiers and estimates αt by 

minimizing an exponential loss function. 

Interestingly, generative models in [3, 21, 11] estimate a 

similar exponential function by 

However, learning p(x|y = +1) in eqn. (6) is a chal- 

lenging task since we need pseudo-negative samples cover 
the entire space of x. We can only learn an approximated 

discriminative model q(y|x) ∼ p(y|x) on a given set of 
positives and a limited number of pseudo-negatives sam- 

exp{− T 

Σ 
exp{− 

ΣT 

λ H (x)} 

λtHt(x)} 

pled from pr(x). Fig. (2) shows an illustration. Our ba- 

sic strategy is to learn an approximated p 
then plugged it back into the right side of eqn (6). Since 

where Ht(x) is a feature of x. 

As we can see, both eqn. (2) and eqn. (3) have a fea- ture 

selection stage and a parameter estimation procedure. 

However, it is much easier to learn eqn. (2) than eqn. (3) 

because the normalization term in the discriminative model 

is on y ∈ {−1, +1} whereas the generative models requires 

integrating out over all possible x in the data space. 
 

 

t=1 
the same distribution when a perfect classifier cannot tell 
them apart. 

3. Learning framework 

In this section, we show how to use discriminative mod- 

αtyht(x)} 
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1 
1 |DB| 

l 

p(x|y = +1) will be used to draw negatives, we write 

it in the form of pr as well to make it less confusing. 
Next, we give detailed explanations. 

Let pr(x) be an initial reference model, e.g., a 

database of natural images in which every image 

patch in every im- age is a sample. We define: 

pr(x) = β

 
 1  Σ 

δ(x − x )

 

+(1 − β)U (x), (7) 
 

 
 

els to derive generative models. For the remainder of this 
 

1In the literature, one also uses p(x, y) to denote a generative model. 

where DB includes all image patches in the database, |DB| 
is the size of the set, U (x) is the uniform distribution, and 

xl∈DB 
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q1 (y=−1|x) 1 q(y=−1|x) 

n+1 Zk 
kt kt 1 

p n p n+1 

n 

 

Figure 3. An illustration of the learning algorithm. The left most figure shows a target distribution from which we want to learn a generative model. The top left figure shows a 

reference distribution used, which is a uniform distribution. At each stage, samples are bootstrapped from the reference distribution and used as pseudo-negatives. The right most 
figure shows the final generative model learned. Points shown in cross are samples drawn from the final model. They are overlayed with the training set. 

 

δ is the indicator function. In case DB is not available, we Theorem 1 KL[p+(x)||pr (x)]  ≤  KL[p+(x)||pr (x)] 

set β =  0 and pr(x) = U (x). (Drawing fair samples from pr (x) is where KL denotes the Kullback-Leibler divergence be- 
1 1 

straightforward since it is a simple mixture model. Evaluating pr(x) is more time- 

consuming. However, it is not necessary to compute pr (x) if the same reference 

distribution is used in 9.) 

Let SP be a set of samples from which we want to learn 

a generative model. We randomly draw a subset of pseudo- 

tween two distributions, and p(x|y = +1) = p+(x). 
Proof: 

KL[ +(x)||pr (x)] − KL[ +(x)||pr  (x)] 

=  

∫  
+ 

 
 1 q(y = +1|x) 

p
r 

(x)

 

dx − 

∫  
+ r 

negatives, SN , w.r.t to pr(x) to train a classifier q based on 

 

p (x) log Zn 
∫ 

 1  

q(y = −1|x) 
∫ 

 
 

n p 
 

q(y = +1|x) 

(x) log[pn (x)]dx 

pr(x) by  
1 q (y = +1|x) 

 1  
=  log + 

Zn 

+(x) log 
q(y = +1|x) 

q(y = −1|x) 
dx ≥ 0 (11) 

pr(x) =  1  pr(x), (8) 
2 Z1 q1(y = −1|x) 1  . 

It is easy to see that Zk = q1 (y=+1|x) pr(x)dx ≤ 1 

where Z1 = 
∫ q1 (y=+1|x) pr(x)dx. Note that Z1 = 1 if 

 

 

and 
∫ 

p+(x) log q(y=+1|x) dx ≥ 0. Each classifier in aver- 

technique [17] based on SN , which is a set of fair samples. shows that pr (x) converges to p(x|y = +1) by combin- 

(This is an approximation and in practice, it is not critical for the overall model.) 

Given pr(x), if we plug it back to the right side of 

eqn. (8) to replace pr(x), we can compute pr(x) in an iden- 

ing a sequence of discriminative models, and the conver- 

gence rate depends on the classification error at each step. 
We make several interesting observations from eqn. (10) 

1 3 

tical manner. Repeating the procedure n times, we get 

pr (x) =
    1 qk(y = +1|x) 

pr(x), (9) 

w.r.t. eqn. (3) and eqn. (2). Compared to eqn. (3): the 

discriminative power of a strong classification model, e.g. 

boosting, is directly used; the pr(x) term can be dropped 

n+1 
k=1 Zk qk(y = −1|x) 1 

1 
if we want to compare different learned generative models, 
e.g. different texture patterns, since they share the same 

where qk(y = +1|x) is the discriminative model learned by 

the kth classifier. If a boosting algorithm is adopted, eqn. (9) 
becomes 

n 

reference distribution. Compared to eqn. (2): the negative 

samples are not always given and our algorithm is able to 

gradually invent new pseudo-negative samples. Note that we assume enough positive samples are representative for 

pr (x) =
    1  

exp{2α  
Σ 

h  (x)}pr(x). (10) 

 

SN and SP . Thus, we obtain an updated generative model 
p 

q1(y|x) = pr(y|x). We compute Z1 using Monte Carlo 

= 
+ 

p (x) log 
Zn 

dx + 
(x) log dx 

q(y = −1|x) 

age makes a better-than-random prediction. This theorem 

k=1 t 

the true distribution. When the number of positives is lim- 

ited, our model may overfit the data. 

∫ 

p 
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n+1 

Our goal is to have 

 
r 
n+1 

 

 

(x) → p(x|y = +1), 

3.2. Sampling strategies 

One key problem in our learning framework is to draw 

fair samples w.r.t. pr (x) as pseudo-negatives in learning. 

when the set of pseudo-negatives sampled from pr 
indistinguishable from the training positive set. 

(x) are Next, we discuss five sampling strategies. A general prin- 

ciple is to avoid sampling x from scratch since sampling is 

p 
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n+1 

n+1 

often a time-consuming task. It is worth to mention that 

some sampling strategies mentioned below, e.g. ICM and 

constraint sampling, will not generate fair samples. How- 

ever, we found that, in practice, getting difficult samples 

allows the algorithm converge faster than fair samples. We 

will study more efficient sampling methods in the future. 

Bootstrapping 

At early stages of the learning process, when k is small, we 

bootstrap pseudo-negatives directly from the existing im- 

age database. This is similar to the cascade strategies used 

in [22], except that we are using a soft probability here. Fig. 

(6) shows some pseudo-negative samples bootstrapped from 

a database at different stages. As we can see, pseudo- 

negatives become increasingly similar to the training posi- 

tives. After several rounds, all the samples in the database 

with ridge regression, we have 

x = (FT F + λI)−FT (f −(h)). 

Ridge regression is used to regularize x since all hs obtained 

may not always be consistent with each other. Figure (10d) 

shows some images sampled using this method. However, 

this sampling method is not yet so effective because some 

samples satisfying the constraints of the weak classifiers 

may not be obtained from the closed-form solution. 

Top-down guided sampling 

For some regular patterns, e.g. faces, one can use a PCA 

model (principle component analysis) as a reference distri- 

bution. It is very fast to draw a sample out of a PCA model, 

and we then use Gibbs/ICM sampler to perturb the image. 

We quickly locate a promising sample and use Gibbs/ICM 

receive a low probability. We are forced to use a sampling sampler to drag it to a better state in terms of pr (x). This 

scheme to invent more pseudo-negatives. 

Gibbs sampling 

The objective of the sampling stage is to draw fair samples 

w.r.t. pr (x) in eqn. (10). In the experiments reported in 

this paper, each sample x is an image patch of size 23 × 
23. To speed up the sampling process, it usually starts from 

pseudo-negatives used in the previous stage. For each pixel 

(i, j) in the image patch, we compute 

works when we want to obtain a refined model for patterns 

roughly following a regular distribution. 

3.3. Outline of the algorithm 

In this section, we give the outline of our learning frame- 

work. We use the boosting algorithm as our discriminative 

model in the rest of this paper. 

 

r 
n+1 (x(i, j) = v, x(Λ/(i, j))|y = +1), ∀v, (12) 

 

and randomly assign value v to pixel (i, j) accordingly. 

Gibbs sampler [8] is used here. The potential function is 

based on all the weak classifiers h which make decision on 

both local and global information about x. Typically, sev- 

eral sweeps are performed to sample values for all the pixels 

in x. 

Iterated conditional modes 

We may use the Iterated Conditional Modes (ICM) [17] 

method to speed up the Gibbs sampling. That is, instead of 

sampling the value for each x(i, j) according to eqn. (12), we 

directly choose the value which maximizes the proba- 

bility. In practice, we run one sweep of Gibbs sampling 

followed by 4 − 5 sweeps of ICM. 

Constraints based sampling 

The above two sampling schemes need to sample every 

pixel in x for several sweeps. On the other hand, each weak 

classifier hkt in eqn. (10) acts as a constraint, and the com- 

bination of all the hs decide the overall probability of x. 

Suppose each h is a real value on a filter response of x, 

h = f (F (x)), instead of performing Gibbs sampling on 

the x, we can treat all the hs as random variables and run 

Gibbs sampler based on eqn. (10). Once the values of all 

the hs are obtained, we use least-square to obtain x from 

F · x = f −(h), where F denotes the liner transformations 

corresponding to all the hs, and f − are inverse functions 

of the weak classifiers in the boosting algorithm. Together 

Our goal is to learn a generative model for a set of trainings samples, SP . 

Collect an image database, DB. 

Randomly select a sub-set of samples from the database. This is our initial 

 

a set of samples of white noise. 

Train a discriminative model using a boosting algorithm. 

Bootstrap data from the database based on eqn. (10). If all the samples 

receive low probability, then draw samples using one of the sampling 

schemes discussed in Sect. (3.2). 

Go back to step 4 until the training error for the discriminative model 
reaches an upper threshold. 

pseudo-negative sample set SN . If a database is not available, then draw 

p 
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Figure 4. Outline of the learning algorithm. 

Fig. (3) shows a toy example for the learning 

algorithm outlined in Fig. (4). The left most figure 

shows the training samples. The distribution has an 

irregular shape and it is hard to fit a mixture of 

Gaussians to it. We use a uniform distribution as our 

initial reference model and implement a boosting 

algorithm (GentalBoost [7]). Features are projec- 

tions to directional lines on the plane, and there are 

around 500 such lines. A sequence of discriminative 

models grad- ually cut out the space for the 

generative models. Unlike traditional PCA or 

mixture of Gaussians approaches, we do not need to 

make any assumption about the shapes of the target 

distribution. The algorithm utilizes the intrinsic gen- 

eralization ability in boosting to achieve accuracy 

and ro- bustness. 

4. Experiments 
We implemented a variety of applications using 

the learning framework introduced in this paper, 

including texture modeling/synthesis, texture 

classification, non- photo-realistic rendering, 

learning natural image statis- tics/denoising, and 

face modeling. To allow the framework 
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to deal with both homogeneous patterns e.g. textures, and 

inhomogeneous patterns, e.g. faces, we use two types of fea- 

tures. The first set of features are Haar wavelets, which are 

similar to those used in [22]. These Haar filters are good at 

capturing common components appearing at similar lo- 

cations. It has been shown that the concept of texture ties 

directly to the histogram of Gabor responses [21]. For each 

image patch, we convolve it with a bank of Gabor wavelets 

and obtain a histogram for each filter. Typically, each his- 

togram has 30 bins. We use each histogram bin as a fea- 

ture. The the boosting algorithm weights the importance of 

every bin and combines them, and eventually constrains 

the sampled images to have similar histograms to the train- 

ing images. For an image patch of size 23 × 23, there are 

around 35, 000 features including the Haars and histogram 

bins. Typically, we use 40 features for each boosting strong 
classifier. It is critical to have real-valued weak classifier 

in the boosting algorithm to facilitate the sampling process. 

We use the GentalBoost algorithm [7] in this paper. The 

discrete AdaBoost algorithm [6] gives hard decision bound- 

aries for each weak classifier, and thus, it is hard to respond 

to small changes in the image. For all the experiments re- 

ported below, we use nearly an identical parameter setting 

in training. It usually takes a couple of days on a modern 

PC to train. 

4.1. Texture modeling 
 

Training textures 
 

  

Synthesized textures 
Figure 5. Examples of texture modeling. The first row shows two training images 
and the second row displays textures synthesized based on learned models. 

An application for our framework is texture modeling. 

The basic learning strategy has been discussed in the be- 

ginning of this section. Fig. (6) shows some intermediate 

results for modeling a texture shown in Fig. (5a). There are 

around 25 layers of discriminative models learned and we 

display the pseudo-negative samples for several of them. Not 

surprisingly, almost all the features selected in the dis- 

criminative models are histogram features. As we can see, 

the pseudo-negative images look more and more like the 

training images after bootstrapping. The third layer shows 

the pseudo-negatives sampled based on eqn. (10). Interest- 

ingly, these pseudo-negatives have passed all the classifica- 

tion stages up to this layer, yet, they do not look like the 

training positive samples at all. This echoes one of the ar- 

guments made in this paper: discriminative models are fo- 

cused on classifying the positives and pseudo-negatives, and 

they do not necessarily correspond to the underlying forma- 

tion of the patterns of interest. With the pseudo-negatives 

gradually sampled, the model starts to converge and the 

sampled pseudo-negatives become increasingly faithful to 

the training samples. Compared to the FRAME model [21], 

our method is more general and flexible. It handles both 

homogeneous and inhomogeneous patterns. It converges 

faster due to the use of an image database in the early stage 

of the learning process and fast parameter estimation in 

boosting. Also, each discriminative model may combine 

different bins in different histograms, whereas the FRAME 

model has to match entire histograms one by one. In this 

case, our model learns a generative model for an image 

patch. To synthesize an image like those shown in Fig. (5), 

we sample patch by patch, but with an overlap of half the 

size to avoid boundary effect between the patches. Our ap- 

plications in image analogies and image denoising below 

use the same strategy. 

4.2. Texture classification 

As stated in the paper, generative models learned sep- 

arately by our framework are directly comparable if they 

share the same reference distribution. Also, the comput- ing 

and modeling processes are directly combined, and we do 

not need to design additional data-driven techniques to 

make inference. Fig. (7) shows a classification result on 

two textures learned separately. We did not learn the back- 

ground texture. 

4.3. Image analogies 

This learning framework allows us to learn very dif- 

ferent generative models, which can be an artistic style. Fig. 

(8) shows an example. We use a couple of “Van Gogh” style 

images in [10] for training and one image is shown in Fig. 

(8a). We use an identical learning strategy as in tex- ture 

modeling. A slight difference with the texture synthe- sis is 

that we add a likelihood term so that rendered image is 

slightly constrained by the original image. Fig (8c) shows a 

result rendered by our algorithm and Fig (8d) displays a re- 

sult using the method in [10]. Unlike image analogies [10] 

where a pair of images are required for learning a mapping 

function, we directly learn a generative model (style) from 

a set of training images. 

4.4. Learning natural image statistics 

Using the same algorithm, we can learn natural image 

statistics. Our positive training images are from the Berke- 

ley dataset [18]. The training process is the same as in 

the texture modeling and image analogies cases. However, 

the initial negatives samples are sampled from white noise. 
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(a) Training image (b) Input image 

(c) Result by our method (d) Result by image analogies 
Figure 8. An example for none-photo-realist rendering. A generative model is 
learned based on (a). A similar style image (c) is rendered from (b). (d) shows the 
result in [10] 

 

than that shown in Fig. (9e) [19], in which a generative 

model for learning image prior was proposed. It appears 

that the student-T distribution in [19] is important, and we 

will adopt a similar model to adapt our algorithm for image 

denoising in the future. 

4.5. Face modeling 

 

 
Sampled from the overall learned model 

Figure 6. Illustration of the learning process for texture modeling. This is a similar 

figure as Fig. (3) with a real application. There are a total of 25 layers of discrimina- 

tive models learned and we show several of them here. The first two set of pseudo- 
negatives are bootstrapped and the third and the last ones are obtained by sampling. 

 

(a) (b) (c) (d) 
Figure 7. Example of texture classification. (a) is an input image with two fore- 
ground textures and a background texture. (b) shows a classification result. (c) and 
(d) display the probability maps for the two foreground textures. 

 

Fig. (1) shows patches sampled at different stages in the 

learning process. We can use the generative model learned 

from natural image statistics, as priors, to perform denois- 

ing. Fig. (9) shows an example. We also train a discrimina- 

tive model based on bootstrapping procedures only (without 

the sampling stage). The negative images use the same im- 

ages from [18] with added Gaussian noise. Fig. (9c) shows 

a result by discriminative model only. The result by the full 

model is shown in fig. (9d). This demonstrates that our 

model improves the robustness of discriminative mod- els 

in this domain. However, our result is still a bit worse 

(a) (b) (c) (d) (e) 
Figure 10. An example of face modeling. (a) shows some training images from 

the FERET dataset [5]. Some image patches bootstrapped from natural images are 
shown in (b). (c) displays images sampled after the bootstrapping stage. (d) shows 
images sampled using the constraint sampling method discussed in Sec. (3.2). Some 
samples drawn from the overall model are displayed in (e). 

Our framework works both on homogeneous and on in- 

homogeneous patterns. We apply it for face modeling and 

fig (10) shows an example. The majority of features se- 

lected are Haars in the bootstrapping stage. Fig (10.c) 

shows some images sampled when all the negative samples 

are exhausted from an image database after 12 layers of dis- 

criminative models. These image patches, though they have 

passed all the discriminative models, do not look like faces. 

Fig (10.d) shows some images sampled using the constraint 

sampling method discussed in Sec. (3.2). Some face images 

sampled using the overall model are displayed in Fig (10.e). 

In face detection, this method achieves result close to the 

state of the art for face detection algorithms [22] on the MIT 

dataset. The later stage of discriminative models, however, 

do not further improve the detection result because they are 

mostly focused on capturing natural image statistics. 

5. Conclusion 

In this paper, we have proposed a general generative 

model learning framework, and it has a variety of applica- 
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(a) (b) (c) (d) (e) 

Figure 9. An example for image denoising using learned generative model on natural image statistics. (a) is an original image. (b) shows an image by adding Gaussian nose 

(σ = 25) to (a). (c) is the result based on discriminative model only. (d) shows the result by our algorithm. (e) is the result by the Fields of Experts Model [19]. 

tions in machine learning and computer vision. Although 

low-level vision tasks are shown in this paper, our model 

can be used in high-level tasks also, e.g. shape and object 

modeling. For a long time there has been a debate about the 

use of generative and discriminative model in the litera- ture. 

We provide another view to this problem in this paper and 

show that generative and discriminative models are not 

necessarily all that different. 

Our method has many advantages over existing genera- 

tive model methods. Most significantly, we do not need to 

define specific rules for different cases and the algorithm 

naturally works for a variety of patterns (homogeneous, in- 

homogeneous, and structured). Traditional discriminative 

model approaches do not capture the generation process of 

the data. Our model largely improves the modeling capa- 

bility of existing discriminative methods and also improves 

their robustness (shown in image denoising). We will con- 

tinue our research to further illustrate this point in the future. 

Though we have discussed various sampling procedures 

in this paper, the sampling process is still slow and speed is a 

major bottleneck to our approach. For most the experiments 

shown in this paper, we use ICM with Gibbs sampling for 

the first sweep. Our model also assumes enough positive 

samples are always given. In the case with limited num- ber 

of training samples, other generative models, e.g. PCA, may 

be better than ours. Future research is needed to study the 

performance of different model choices under different 

situations. 
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